Orographic Flow over an Active Volcano

Alex Poulidis, Ian Renfrew, Adrian Matthews
University of East Anglia, School of Environmental Sciences
• **Aims of research**
 – Study the effect an active but non-erupting volcano has in the orographic flow and rainfall

• **Existing literature**
 – Flow over hills
 – Effect of boundary layer
 – Effect of heated terrain
 – Orographic rainfall

• **Methodology**
 – Use WRF to study:
 • Idealised simulations
 • Case study analysis
• Type of volcanoes studied
 – Dome building (High viscosity magma)
• What is a volcanic dome
 – Quickly solidifying lava acting as a tap
 – ST values ranging from 320-600K
• Rainfall can trigger volcanic hazards
 – Pyroclastic flows/ Eruptions
 – Lahars
• Dome in simulations
 – Small number of grid points set at average temperature

(Macfarlane et al, 2006)
• **Domain**
 – $\delta x=500m$
 – 150 x 150 x 70 grid points

• **Gaussian hill**
 – 1km height
 – 10km half-width

• **Idealised atmosphere**
 – Brunt-Väisälä frequency $N=0.01s^{-1}$
 – Wind constant with height
 – Experiments ranging from 2ms$^{-1}$ to 15ms$^{-1}$ (Fr=0.2-1.5)

• **Surface temperature anomaly**
 – Experiments ranging from 0 to 40K

• **Boundary layer**
Results (Fr=1 Case)

Across middle

Lines: Theta
Contours: W
Purple: BLH

At h=200m
• **Domain**
 - 300 x 150 x 70 grid points

• **Sea before and after the hill**

• **Semi-realistic atmospheric structure**
 - Inversion at 2km height with varying strength
 - Wind height dependant
 - Experiments run for 15ms$^{-1}$

• **Surface temperature anomaly**
 - Experiments for 0 and 40K
Results (Strong Inversion Case)

Control

Heated (40K)

Across middle

Lines: Theta
Contours: W
Purple: PBLH
Thick: Clouds

Rainfall

Average Rainfall (mm/day)
Results (Weak Inversion Case)

Control

Heated (40K)

Across middle

Lines: Theta
Contours: W
Purple: BLH
Thick: Clouds

Rainfall
Conclusions

• The temperature anomaly drastically alters the flow pattern
 – Introduction of a convective plume near the anomaly

• Can act to trigger localised deep convection
 – Very sensitive to atmospheric conditions
 • Humidity above the inversion
 • Characteristics of the inversion (height, strength)
 • CAPE
Next Steps

• Specify the necessary conditions for the deep convective rainfall
• Investigate the possibility of non-localised convection
• Higher resolution runs to analyse the plume
• Real topography/ Case studies
Thank you for your time

• Questions?