The impact of valley geometry on thermally driven flows and vertical heat fluxes

Johannes Wagner, Alexander Gohm, Mathias Rotach, Daniel Leukauf, Christian Posch

Institute of Meteorology and Geophysics
University of Innsbruck, Austria

International Conference on Alpine Meteorology 2013

June 04, 2013
Outline

1. Introduction
2. Goals
3. Simulation results
4. Conclusion
1. Introduction

2. Goals

3. Simulation results

4. Conclusion
Atmospheric boundary layer (BL)

- Convective boundary layer over flat terrain
Slope and valley winds \Rightarrow BL structure

- Change of BL structure due to mesoscale slope/valley winds?
- Impact of thermally driven flows on vertical transport?
- Difference: valley BL \Rightarrow plain BL?
Change of BL structure due to mesoscale slope/valley winds?
Impact of thermally driven flows on vertical transport?
Difference: valley BL \(\Rightarrow \) plain BL?
Operational NWP- and climate models do not resolve valleys properly. \(\Rightarrow \) **Error** in vertical profiles \(\Rightarrow \) **Parameterization**
Outline

1. Introduction
2. Goals
3. Simulation results
4. Conclusion
Boundary layer over complex terrain

- Systematically vary valley topography.
- Compute bulk flux profiles (heat, moisture, mass, ...).
- Impact of valley depth/width on bulk profiles?
- Difference between valley and plain profiles.

Valley geometry and thermally driven flows
ICAM 2013
Outline

1. Introduction
2. Goals
3. Simulation results
4. Conclusion
Model set-up (Schmidli 2013)

Model set-up

- WRF model (version 3.4)
- 40 x 10 x 1.5 km
- dx = dy = 50 (100) m
- dz = 8 to 50 m
- SGS turbulence: Deardorff-type TKE
- Periodic lateral boundaries
- 5 hours simulation
- Online statistics module

Valley geometry and thermally driven flows
ICAM 2013
Model set-up (Schmidli 2013)

Model set-up

- WRF model (version 3.4)
- $40 \times 10 \times 1.5 \text{ km}$
- $dx = dy = 50$ (100) m
- $dz = 8$ to 50 m
- SGS turbulence: Deardorff-type TKE
- Periodic lateral boundaries
- 5 hours simulation
- Online statistics module

Initialisation/Forcing

- Atmosphere at rest
- $\frac{\partial \theta}{\partial z} = 3 \text{ K km}^{-1}$
- Constant forcing: $HFX = 150 \text{ W m}^{-2}$
Model set-up (Schmidli 2013)

Model set-up

- WRF model (version 3.4)
- 40 x 10 x 1.5 km
- dx = dy = 50 (100) m
- dz = 8 to 50 m
- SGS turbulence: Deardorff-type TKE
- Periodic lateral boundaries
- 5 hours simulation
- Online statistics module

Initialisation/Forcing

- Atmosphere at rest
- $\frac{\partial \theta}{\partial z} = 3 \text{ K km}^{-1}$
- Constant forcing: HFX = 150 W m$^{-2}$
LES Output
Subgrid, resolved, mean variables

- Fully turbulent variable: $\tilde{\psi}$
- Model-gridbox averaged variable: $\overline{\psi}$

$$\tilde{\psi} = \overline{\psi} + \psi'_{SGS}$$

- LES output: $\overline{\psi}$

$$\overline{\psi} = \langle \overline{\psi} \rangle + \psi''_{RES}$$

- Averaging operator (Schmidli 2013)

$$\langle \cdot \rangle = \frac{1}{TL_y} \int \int \overline{\psi} dy dt$$

- $T = 40$ min, $L_y = 10$ km

Valley geometry and thermally driven flows
ICAM 2013
Reference run: mean flow

Valley geometry and thermally driven flows

ICAM 2013
Heat flux profile: plain ⇔ valley

Valley geometry and thermally driven flows
ICAM 2013
Heat flux profile: plain ⇔ valley

Valley geometry and thermally driven flows
ICAM 2013
Variation of valley depth: $<U>$

Valley geometry and thermally driven flows

IMIGI
Institut für Meteorologie und Geophysik · Universität Innsbruck

ICAM 2013
Valley geometry and thermally driven flows

ICAM 2013
Valley depth: bulk profiles

Heat Flux

Pot. Temperature

Heating Rate
Outline

1 Introduction
2 Goals
3 Simulation results
4 Conclusion
Conclusions

The deeper the valley the stronger the...

- valley inversion
- heat flux at mountain top
- superposed circulation cells
Conclusions

The wider the valley the...

- stronger the valley inversion
- weaker the heat flux at mountain top
- weaker the superposed circulation cells
Conclusions

Existence of along valley wind:
- stronger valley inversion
- stronger upslope-winds
- deeper + colder valley BL
Thank you for your attention!

Schmidli, J., 2013: Daytime heat transfer processes over mountainous terrain, sub.
Heat flux profile: plain ⇔ valley

Valley geometry and thermally driven flows
ICAM 2013
Heat flux profile: plain ⇔ valley

Valley geometry and thermally driven flows
ICAM 2013
Heat flux profile: plain ⇔ valley

RES+SGS:

Valley geometry and thermally driven flows
ICAM 2013
Variation of valley width: \(<U> \)
Valley width:bulk profiles

Heat Flux

BULK HFX

Pot. Temperature

BULK Theta

Heating Rate

BULK Tend

Valley geometry and thermally driven flows
ICAM 2013
Valley-plain: bulk profiles

Heat Flux

Pot. Temperature

Heating Rate

Valley geometry and thermally driven flows

ICAM 2013
Vertical profiles: <U>

Comparison WRF ⇐⇒ ARPS (Schmidli, 2013)

Valley geometry and thermally driven flows
Valley depth: bulk heat flux profiles

Valley geometry and thermally driven flows
ICAM 2013
Valley depth: bulk profiles

Heat Flux

Pot. Temperature

Heating Rate

Valley geometry and thermally driven flows
ICAM 2013
Valley width: bulk heat flux profiles

SGS

RES

MEAN

Valley geometry and thermally driven flows
ICAM 2013
Valley-plain topography

- Valley plain topography: evolution of along valley winds
- Symmetric boundary conditions in along valley direction
Valley-plain topography: $<U>$, $<W>$<T>
Valley-plain: bulk heat flux profiles

Valley geometry and thermally driven flows
ICAM 2013