METCRAIX II
An upcoming field investigation of downslope-windstorm-type flows on the inner sidewall of Arizona's Meteor Crater

Arizona’s Barringer Meteor Crater

Diameter: 1.2 km
Depth: 170 m
Plain-rim: 30-50 m
Nighttime drainage flows approach the crater from the Mogollon Rim

Model:
4-6 m/s < 50 m

Observations:
5-8 m/s, 35 m
• During METCRAX-I in 2006 we found that intermittent downslope-windstorm-type flows developed over the crater’s SW sidewall on clear, undisturbed nights. (See Adler et al. 2012)

• A new experiment, called METCRAX II, will be investigating these flows. Laboratory-like experiment – continuous observations of approach flow and response of crater atmosphere.
Experimental Goal

Improve understanding of hydraulic-analog atmospheric flows that produce downslope-windstorm-type events.

The overall research program will combine modeling with field research to improve understanding of these flows.

This presentation will focus on the design of a field program to investigate katabatically driven hydraulic-type flows at Arizona's Meteor Crater in a one-month experiment scheduled for October 2013.
Equipment placement - Sites A through E

Site A
- Far upwind

Site B
- Flow field/stratification impinging on crater topography

Site C
- Flow field/stratification at rim

Site D
- In-Crater response

Site E
- Vantage point to remotely sense crater response
Flow upwind of Crater

More Model results this afternoon in the talk by Manuela Lehner!
Flow and temperature structure upwind of Crater

- Radar Wind Profiler
- SoDAR / RASS
- Wind-Profiling LiDAR
- Scanning Doppler LiDAR
Cold air damming upwind of crater

Hobo temperature data loggers

Mobile tethersonde
Between sites B and C
Flow splitting around the crater

6 Automatic Weather Stations

Scanning Doppler Wind LiDAR

Site B LiDAR
Warm-Air Intrusions & Wind Field in Crater
Temperature in Crater Basin

0-400 m AGL
Warm-Air Intrusions & TKE

Variable Extent of Warm-Air Intrusion

Effect on near-surface turbulence

“Mini-PAM / AWS”: 1 level: Pressure, Sonic, T/RH
Warm-Air Intrusions & Pressure Field

Variable Extent of Warm-Air Intrusion
Summary

• METCRAX II, October 2013, will investigate katabatically driven hydraulic flows over the rim of Meteor Crater that produce warm air intrusions and hydraulic jumps.

• Unusual field equipment resources: 3 LiDARs and 2 tall towers

• Selected science issues:
 • evolution of 3-D structure
 • controlling upstream parameters
 • evaluation of existing theories
 • modeling
Project personnel - METCRAX II

Dave Whiteman
UU

Sebastian Hoch
UU

Manuela Lehner
UU

Allison Charland
UU

Ron Calhoun
Arizona State University

Rich Rotunno
NCAR

Bill Brown
NCAR

Steve Semmer
NCAR

Norbert Kalthoff
Karlsruhe Inst. Tech.

Bianca Adler
KIT

Roland Vogt
Uni. Basel

Christian Bernhofer
TU-Dresden

Jan Cermak
Ruhr Univ. Bochum

Funded by NSF
Questions?
Warm-Air Intrusions
Warm-Air Intrusions & LiDAR siting

LiDAR Siting

• Sites and ranges

• Alignment & geometry

RHI – co-plane or virtual towers?
Warm-Air Intrusions & LiDAR siting

- Sites and ranges in co-planar geometry
- 70-100 m blind spot
- 1000 m range
- 1-2 min / scan

Cross section through SW-Gap, Azi.: 22.5 deg
Meso-scale drainage flow formation & evolution

- Full Energy Balance along the slope: PAMs at A, B
- Mini-SoDAR observations A, B
- Temperature profile at B (50 m tower, RASS, Tethersonde)

Pulsations & changes in wind speeds, direction, stability

~ 5.5 km
What is so special about Meteor Crater?

- Near-circular basin
- Surrounded by a uniform plain sloping upwards to the SW with 2% slope
- Uniform rim height - no major saddles or passes

© John S. Shelton
10m wind speed & direction

Sensible & latent heat fluxes; momentum flux; \{u',v',w',tc',q'\}

2m P, T, RH

PC-104 Linux data system

12 V solar-charged batteries

Flux-PAM Instrumentation

2.4 GHz radio
K&Z CG4’s
K&Z CM21s
Soil measurements
Logistics
Synoptic situation & weather pattern

- Radiosondes Flagstaff NWS & (ISS- GAUSS)
- Wind Profiler / RASS (ISS)
ISFS Instrumentation

Profile Towers at sites B (50m) & C (40m)

Sonic Anemometers & \{T,RH\} at 5m height intervals
Meso-scale drainage flow formation & evolution

METCRAK 1.5: Jet nose : 6-8 m/s at 30 m AGL
The Meteor Crater

A near-circular basin with a diameter of 1.2 km and a depth of 170 m. The crater's rim projects 30-50 m above an extensive surrounding plain, which is tilted upward to the southwest.

During clear undisturbed nights, a shallow mesoscale drainage flow comes down this plain from a collection of plateaus and mesas (the Mogollon Rim) to interact with the crater topography. Hydraulic flows over the crater's rim lead to occasional downslope-windstorm-type events on the inner southwest sidewall of the crater, and a hydraulic jump sometimes forms locally over the sidewall. These katabatically driven events were discovered serendipitously in a previous field program at the crater, but the characteristics of the flows were not well observed with the instruments deployed during those experiments.
Warm-Air Intrusions & Pressure Field

Variable Extent of Warm-Air Intrusion

Pressure sensor

PAM